

OpenSanctions technical documentation

This technical documentation is intended to be read by Python developers who wish to
run the OpenSanctions crawlers on their own infrastructure, or plan to add their own
crawlers to the system.

For users who merely want to consume the datasets produced by the project, we suggest
you browse the project home page [https://opensanctions.org] instead.

System overview

The OpenSanctions pipeline handles the following key steps:

	Fetching entity data from online sources and parsing the original format

	Normalising the entities in source data into the OpenSanctions data model

	Storing entities to a local staging database for processing

	Merging entities across different sources (TODO)

	Exporting data into a variety of target formats (JSON, CSV)

These steps are triggered using a command-line utility, opensanctions, which can
run parts or all of this process for specific segments of the data.

Contents:

	Installation
	Using Docker

	Python virtual environment

	Configuration

	Using the system
	Datasets, sources and collections

	Entities and targets

	Using the command-line tool

	Developing a crawler
	Source metadata

	Developing a crawler script

	Checklist

	Using the context

	Type lookups

	Crawler helpers

Indices and tables

	Index

	Module Index

	Search Page

Installation

The OpenSanctions data pipeline can be installed in a few different ways, depending on
your answers to these two questions:

	Do you just want to execute the existing crawlers, or change them and add your own
data sources to the system?

	Are you more comfortable running the program in your own Python virtual environment,
or do you prefer to isolate it in a Docker container?

While getting OpenSanctions to run inside a Docker container is very easy, it might
make iteration a bit slower and stand in the way of debugging a crawler as it is being
developed.

In any case, you will need to check out the OpenSanctions application from its
repository to your computer:

$ git clone https://github.com/pudo/opensanctions.git
$ cd opensanctions

The steps below assume you’re working within a checkout of that repository.

Using Docker

If you have Docker installed on your computer [https://docs.docker.com/get-docker/],
you can use the supplied Makefile and docker-compose configuration to build
and run a container that hosts the application:

$ make build
This runs a single command which you can also execute directly:
$ docker-compose build --pull

Once the container images have been built, you can run the opensanctions command-line
tool within the container:

$ docker-compose run --rm app opensanctions --help
Or, run a specific subcommand:
$ docker-compose run --rm app opensanctions crawl eu_fsf
You can also just run a shell inside the container, and then execute multiple
commands in sequence:
$ docker-compose run --rm app bash
container$ opensanctions crawl eu_fsf
The above command to spawn an interactive shell is also available as:
$ make shell

The docker environment will provide the commands inside the container with access to
the data/ directory in the current working directory, i.e. the repository root.
You can find any generated outputs and the copy of the processing database in that
directory.

Python virtual environment

OpenSanctions functions as a fairly stand-alone Python application, albeit with a
large number of library dependencies. That’s why we’d suggest that you should
never install OpenSanctions directly into your system Python, and instead always
use a virtual environment [https://docs.python.org/3/tutorial/venv.html].
Within a fresh virtual environment (Python >= 3.9), you should be able to install
OpenSanctions using pip:

Inside the opensanctions repository path:
$ pip install -e .
You can check if the application has been installed successfully by
invoking the command-line tool:
$ opensanctions --help

If you encounter any errors during the installation, please consider googling
errors related to libraries used by OpenSanctions (e.g.: SQLAlchemy,
Python-Levenshtein, click, etc.).

Please avoid installing the opensanctions package from PyPI via pip. The
package exists mainly to claim the package name but is not regularly updated
as part of the build/release process of OpenSanctions.

Hint

OpenSanctions has an optional dependency on PyICU, a library related to the
transliteration of names in other alphabets to the latin character set. This
library is not installed by default because its configuration can be tricky.

Consider following the PyICU documentation [https://pypi.org/project/PyICU/]
to install this library and achieve better transliteration results.

Configuration

OpenSanctions is inspired by the twelve factor model [https://12factor.net/] and uses
environment variables [https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html]
to configure the operation of the system. Some of the key settings include:

	OPENSANCTIONS_DATABASE_URI is a database connection string, such as
sqlite:///filename.sqlite or postgresql://user:pass@host/database. Only
PostgreSQL and SQLite are supported as backends.

	OPENSANCTIONS_DATA_PATH is the main working directory for the system. By
default it will contain cached artifacts and the generated output data. This
defaults to the data/ subdirectory of the current working directory when the
opensanctions command is invoked.

	OPENSANCTIONS_METADATA_PATH is the path in which the system will search for
metadata specifications of datasets. By default, this points
to the metadata/ subdirectory within the application source code.

Using the system

Below you’ll find instructions on how to run the OpenSanctions software and how to
add additional crawlers to the system. Before we dive into that, however, let’s
explore some of the concepts underlying the system.

Datasets, sources and collections

OpenSanctions collects data from a variety of sanctions lists and other data providers
and converts it into a common, simple-to-use data model. These data are grouped into
datasets. Some datasets are sources and refer to a data origin (e.g. eu_fsf,
the EU sanctions list. Other datasets combine data from multiple sources into a
collection (e.g. sanctions, which collects all sanctions entities from multiple
sources).

Both source and collection datasets have a metadata definition, stored as a
YAML file in opensanctions/metadata. Sources also include crawler code to parse
and import the material. This code is usually located in opensanctions/crawlers.

Entities and targets

The main objective of OpenSanctions is to combine data from multiple sources into a common
data model. To this end, the system uses
FollowTheMoney [https://followthemoney.readthedocs.io/en/latest/index.html] (FtM),
a data modelling and validation library which defines a set of
entity schemata [https://followthemoney.readthedocs.io/en/latest/entity.html#entities], such as
Person [https://followthemoney.readthedocs.io/en/latest/model.html#schema-person], Company [https://followthemoney.readthedocs.io/en/latest/model.html#schema-company],
Address [https://followthemoney.readthedocs.io/en/latest/model.html#schema-address]
or Sanction [https://followthemoney.readthedocs.io/en/latest/model.html#schema-sanction].
FtM-based entities are stored in a local database and then exported to a variety of file
formats.

A peculiarity of the data in OpenSanctions is that sources may mention entities that are
merely adjacent to a sanctions target, but not themselves sanctioned. To distinguish
the sanctioned entities, they are flagged as targets in the database. For most end
users that wish to download and use a simple CSV file, chances are that they will want
sanctions targets, without the secondary entities in the dataset.

Using the command-line tool

Once you’ve successfully installed OpenSanctions, you can use the
built-in command-line tool to run parts of the system:

Crawl and export the US consolidated list:
$ opensanctions run us_ofac_cons

This works for both sources and collections. Running a collection will
crawl all related sources and then export the collection data:
$ opensanctions run sanctions

Running without a specified dataset name will default to using the
`all` collection which contains all sources:
$ opensanctions run
$ opensanctions run all

If you're developing the crawler, you can skip generating the exports and
only run the crawl stage:
$ opensanctions crawl us_ofac_cons

Inversely, you can also export a dataset without re-crawling the sources:
$ opensanctions export us_ofac_cons

During development you might also want to force delete all data linked
to a source:
$ opensanctions clear us_ofac_cons

The available dataset names are determined from the set of metadata YAML files
found in OPENSANCTIONS_METADATA_PATH (see: configuration).

Developing a crawler

Note

Please consult the contribution guidelines [https://github.com/pudo/opensanctions/blob/main/CONTRIBUTING.md] before developing new crawlers to
learn about inclusion criteria for new data sources.

A crawler is a small Python script that will import data from a web origin and store
it as entities as a source dataset. The basic process for creating a
new crawler is as follows:

	File a GitHub issue [https://github.com/pudo/opensanctions/issues] to discuss the
suggested source

	Create a YAML metadata description for the new source

	Create a Python script to fetch and process the data

	Address any data normalisation issues the framework might report

In the future, an additional step will be required to link up duplicate entities against
other sources and to define canonical/merged entities.

Source metadata

Before programming a crawler script, you need to create a YAML file with some basic
metadata to describe the new dataset. That information includes the dataset name
(which is normally derived from the YAML file name), information about the source
publisher and the source data URL.

The metadata file must also include a reference to the entry point, the Python
code that should be executed in order to crawl the source.

Create a new YAML file in the path opensanctions/metadata named after your new
dataset. By convention, a dataset name should start with the ISO 3166-2 code of the
country it relates to, and name parts should be separated by underscores. The
contents of the new metadata file should look like this:

Warning

The dataset metadata format is going to be subject to significant change.

title: "Financial Sanctions Files (FSF)"
url: https://eeas.europa.eu/

The description should be extensive, and can use markdown for formatting:
description: >
 As part of the Common Foreign Security Policy thr European Union publishes
 a sanctions list that is implemented by all member states.

The Python module that contains the crawler code:
entry_point: opensanctions.crawlers.eu_fsf_demo

A prefix will be used to mint entity IDs. Keep it short.
prefix: eu-fsf

Define what collections the source is part of. All sources are added to a
magical collection called 'all'. Each collection also has its own YAML
metadata file, but the link between a source and the collections it is a
part of is established via the source metadata, not the collection metadata.
collections:
 - sanctions

This section provides information about the original publisher of the data,
often a government authority:
publisher:
 organization: European Commission
 authority: European Union External Action Service
 acronym: EEAS
 country: eu
 url: https://eeas.europa.eu/topics/sanctions-policy/8442/consolidated-list-of-sanctions_en

Information about the data, including a deep link to a downloadable file, if
one exists.
data:
 url: https://webgate.ec.europa.eu/europeaid/fsd/fsf/public/files/xmlFullSanctionsList_1_1/content
 format: XML

Once that YAML file is stored in the correct folder, you should be able to run
command-line operations against the dataset, for example (if your metadata file is
named eu_fsf_demo.yml):

$ opensanctions run eu_fsf_demo
....
ModuleNotFoundError: No module named 'opensanctions.crawlers.eu_fsf_demo'

That error will be addressed in the next section, by adding a crawler script.

Developing a crawler script

In order to actually feed data into the data source, we need to write a crawler script.
The script location is specified in the YAML metadata file as entry_point:. This
also means you could reference the same script for multiple data sources, for example
in a scenario where two data sources use the API, except with some varied parameters.

In our example above, we’d create a file in opensanctions/crawlers/eu_fsf_demo.py
with a crawler skeleton:

def crawl(context):
 context.log.info("Hello, World!")

Running the crawler (opensanctions crawl eu_fsf_demo) should now produce a log
line with the message Hello, World!

You’ll notice that the crawl() function receives a
context object. Think of it as a
sort of sidekick: it helps you to create, store and document data in your crawler.

Fetching and storing resources

Many crawlers will start off by downloading a source data file, like a CSV table or a
XML document. The context provides
utility methods that let you fetch a file and store it into the crawlers working
directory. Files stored to the crawler home directory (context.path) will later be
uploaded and published to the web.

def crawl(context):
 # Fetch the source data URL specified in the metadata to a local path:
 source_path = context.fetch_resource('source.xml', context.dataset.data.url)
 with open(source_path, 'r') as fh:
 print(len(fh.read()))

 # You can also register the file as a resource with the dataset that
 # will be included in the exported metadata index:
 context.export_resource(source_path, title="Source data XML file")

Other crawlers might not be as lucky: instead of fetching their source data as a
single bulk file, they might need to crawl a large number of web pages to collect
the necessary data. For this, access to a pre-configured Python requests
session object [https://docs.python-requests.org/en/master/user/advanced/#session-objects] is provided:

from lxml import html

def crawl(context):
 response = context.http.get(context.dataset.data.url)

 # Parse the HTTP response into an lxml DOM:
 doc = html.fromstring(response.text)

 # Query the DOM for specific elements to extract data from:
 for element in doc.findall('.//div[@class="person"]'):
 context.log.info("Element", element=element)

Responses from the context.http session are cached between different runs of
the crawler and will be cached for up to 10 days. You can partially disable this
by adding a timestamp parameter to the fetched URLs.

Creating and emitting entities

The goal of each crawler is to produce data about persons and other entities of
interest. To enable this, the context provides a number of helpers
that construct and store entities:

def crawl(context):

 # Create an entity object to which other information can be assigned:
 entity = context.make("Person")

 # Each entity needs a unique ID. In OpenSanctions, this is often derived
 # from the ID of a source database, or a string:
 entity.make_slug('Joseph Biden')

 # Assign some property values:
 entity.add('name', 'Joseph Robinette Biden Jr.')
 entity.add('alias', 'Joe Biden')
 entity.add('birthDate', '1942-11-20')

 # Invalid property values ('never' is not a date) will produce a log
 # error:
 entity.add('deathDate', 'never')

 # Store or update the entity in the database:
 context.emit(entity, target=True)

The entity object is based on the entity proxy in FollowTheMoney, so we suggest you
also check out the FtM documentation [https://followthemoney.readthedocs.io/en/latest/api.html#api] on entity
construction. Some additional utility methods are added in the
entity class in OpenSanctions.

Checklist

When contributing a new data source, or some other change, make sure of the following:

	You’ve created a metadata YAML file with detailed descriptions and links to the source
URL.

	Your code should run after doing a simple pip install of the codebase. Include
additional dependencies in the setup.py. Don’t use non-Python dependencies like
Headless Chrome or Selenium.

	The output data for your crawler should be Follow The Money objects. If you need more
fields added to the ontology, submit a pull request upstream. Don’t include left-over
data in an improvised way.

	Include verbose logging in your crawler. Make sure that new fields or enum values
introduced upstream (e.g. a new country code or sanction program) will cause a warning
to be emitted.

	Bonus points: your Python code is linted and formatted with black.

Using the context

Type lookups

TODO

Crawler helpers

The helpers module contains a large number of functions that help you process source data
into the correct shape for the common OpenSanctions data format.

Index

 nav.xhtml

 Table of Contents

 		
 OpenSanctions technical documentation

 		
 Installation

 		
 Using Docker

 		
 Python virtual environment

 		
 Configuration

 		
 Using the system

 		
 Datasets, sources and collections

 		
 Entities and targets

 		
 Using the command-line tool

 		
 Developing a crawler

 		
 Source metadata

 		
 Developing a crawler script

 		
 Fetching and storing resources

 		
 Creating and emitting entities

 		
 Checklist

 		
 Using the context

 		
 Type lookups

 		
 Crawler helpers

_static/plus.png

_static/file.png

_static/minus.png

